NX-MAX6

MANUAL DO USUARIO V1.1

NEVEX Tecnologia Ltda.

Copyright©2015- Todos os direitos Reservados

Atualizado em: 21/05/2015

IMPORTANTE

Máquinas de controle numérico são potencialmente perigosas. A Nevex Tecnologia Ltda. não se responsabiliza pela performance de qualquer máquina, ou danos as mesmas, ou a pessoas por uso deste dispositivo. É de sua inteira responsabilidade garantir o uso seguro de suas máquinas, e obedecer às leis vigentes e códigos do seu Estado/País.

A operação deste dispositivo e a sua instalação elétrica requerem conhecimentos específicos de eletricidade e eletrônica para equipamentos CNC. Se você não tem estas habilidades, por favor, peça ajuda a um técnico especializado.

A Nevex Tecnologia Ltda. não se responsabiliza por danos ao dispositivo NX-MAX6, e a qualquer outro equipamento, até mesmo a sua ou outra pessoa por uso de este dispositivo. Máquinas CNC são geralmente perigosas e devem ser utilizadas por pessoas capacitadas.

Índice

1	Introdução	4
2	Características Técnicas	5
2.1	Dimensões Físicas da Controladora NX-MAX6	6
3	Conhecendo a sua Controladora NX-MAX6	7
3.1	CN1 -Conector dos Drivers / Entradas / Saídas	8
3.2	Conectando os Drivers de Servo ou de Motores de passo	8
3.2.1	Conexão Driver modo diferencial	10
3.2.2	Conexão Driver em modo PNP	12
3.2.3	Conexão Driver em modo NPN	12
3.2.4	Entradas de 24volts	13
3.2.5	Saídas de 24volts	13
3.2.6	Como conectar um Relé	13
3.2.7	3.2.7 VOUT - Saída de 010volts	14
3.3	CN2 - Conector Ethernet	14
3.4	CN3 - Conector USB	14
3.5	CN4 - Conector Alimentação 24 Volts	15
3.6	CN5 - Rede CAN	15
4	Instalação do Software	16
4.1	Instalação do <i>Plugin</i> para Mach3	16
4.2	Instalação dos Drivers USB	18
4.3	Verificação do funcionamento da NX-MAX6	21
5	Configuração do Mach3 para uso da NX-MAX6	22
5.1	Versão do seu Mach3	22
5.2	Configuração do Mach3	22
5.3	Configuração da Porta e Pinos para os Motores	22
5.4	Configuração dos Sinais de Entrada	23
5.5	Configuração dos Sinais de Saída	24
5.6	Configuração do parâmetro LookAhead	25
5.7	Resolução de Problemas	26
5.7.1	Erro de instalação no Windows XP	26
5.7.2	Os motores só giram para um lado	26
5.7.3	Os motores não giram	26
5.7.4	Se observam paradas entre na trajetória de corte	26
6	Assistência Técnica	27

1 Introdução

A NX-MAX6é um dispositivo de controle CNC que utilizado junto com o software de controle numérico Mach3, permite controlar sua máquina CNC através de uma porta USB ou Ethernet.

A NX-MAX6aceita comandos do software Mach3 e coordena todos os movimentos de sua máquina CNC. A sua interface Ethernet e USB permite conectar sua máquina em computadores mais novos que não possuam portas paralelas.

ANX-MAX6 possui 6 canais para conectar servos ou drivers de motor de passo, cada canal pode ser utilizado em modo diferencial o que brinda maior imunidade a ruído entre a controladora e o controlador do servo. Cada canal utiliza 4 fios em modo diferencial e 2 em modo normal.

A controladora também possui 16 entradas de 24 volts, e 8 entradas/saídas que se não utilizados como saída funcionam como entradas.

Uma saída analógica de 0..10 volts permite você controlar a velocidade do spindle por meio de um inversor de frequência. Esta saída também pode ser utilizada para controlar outro dispositivo que requeira uma entrada de 0..10volts.

2 Características Técnicas

• Controladora de Movimento para CNC, Routers, Robótica e outras aplicações.

- *Plugin* para software Mach3, permite utilizar o Mach3 por meio das portas Ethernet ou USB.
- Interfaces Ethernet e USB 2.0.
- Controle de 6 (seis) eixos com sinais de Passo/Direção em modo diferencial.
- Isolamento elétrico dos drivers por meio de isoladores digitais.
- 16 entradas fixas com padrão 24 volts.
- 8 Saídas/Entradas que se não forem usadas como saída ficam disponíveis como entradas, com padrão de 24 volts.
- 01 Saída analógica de 0 a 10 volts para controle de Spindle.
- Interface tipo Passo/Direção para conectar drivers de servo ou motor de passo.
- Sinalização diferencial para Passo/Dir. Voltagem de 5 volts padrão TTL.
- Gerador de pulsos dedicado (FPGA), permite pulsos de alta precisão e frequência de até 500khz.
- Moderno microprocessador ARM Cortex de 32 bits, controla a trajetória em tempo real.
- Entradas e saídas com tensão máxima de entrada de 24 volts.
- Compatível com Sistema operacional XP, Vista e Windows 7 ou 8.
- Dimensões do produto:12 cm x 14,5 cm x4 cm (medidas externas caixa)

2.1 Dimensões Físicas da Controladora NX-MAX6

Medidas externas: 14,5 cm x 12 cm x 4 cm.

Figura 1 Controladora NX-MAX6 dimensões

3 Conhecendo a sua Controladora NX-MAX6

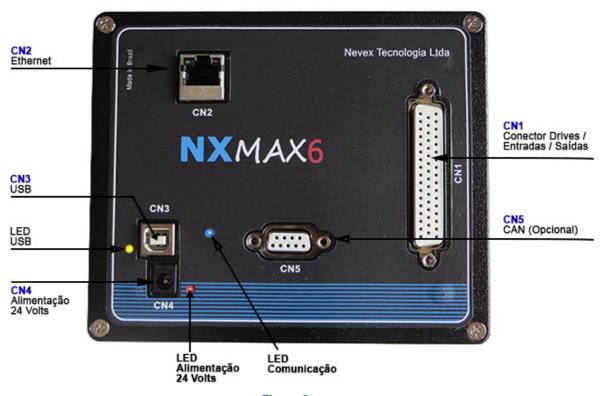


Figura 2 Controladora NX-MAX6 vista frente

3.1 CN1 -Conector dos Drivers / Entradas / Saídas

O conector de 50 pinos, tipo DB50 fêmea, é utilizado para conectar os sinais de passo/direção para os seis eixos, as 16 entradas, as 8 saídas/entradas e o sinal analógico de 0..10 volts.

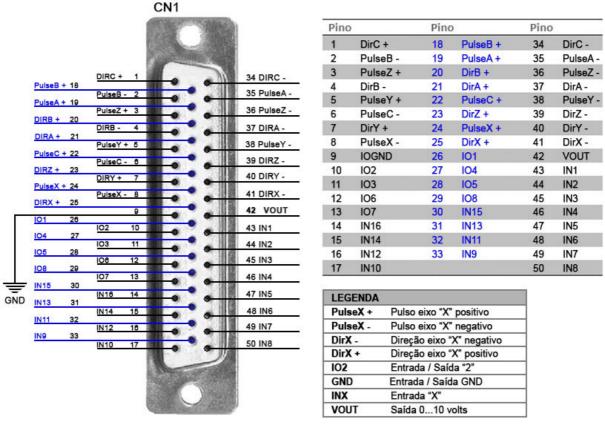


Imagem 1 - CN1

3.2 Conectando os Drivers de Servo ou de Motores de passo

A NX-MAX6 pode controlar até 6 motores servos ou motores de passo simultaneamente. Para cada motor será necessário a utilização de uma unidade Driver. A unidade Driver traduz os comandos de passo e direção da controladora em sinais de potência para os motores servo ou de passo. Você deverá utilizar o Driver correto para os seus motores. No caso de servo motores eles são vendidos já com a unidade de controle (driver) ajustado a potencio do motor. Com motores de passo você terá que determinar a amperagem e voltagem máxima com qual deseja operar os motores e adquirir um Driver que forneça a potência adequada.

A NX-MAX6 utiliza comunicação tipo Passo/Direção para controlar os Drivers conectados a ela. A interface Passo/Direção é um padrão da indústria que permite controlar os Drivers através de dois sinais. Esses sinais são digitais e não devem ultrapassar os 5V.

O Passo (ou Pulse) é pulsado para indicar ao Driver que este deve girar o motor 1 (um) passo, e o Dir determina a direção do movimento do eixo do motor a cada passo.

Os servos ou drivers podem ser conectados em modo PNP, NPN ou Diferencial como mostrado mais abaixo.

Cada driver de motor requer a conexão dos seguintes sinais:

Pulse+ Pulsos de passos que gera a movimentação do motor (polaridade positiva).

Pulse- Pulsos de passos que gera a movimentação do motor (polaridade negativa).

Dir+ Sinal de controle do sentido de rotação do motor (polaridade positiva).

Dir- Sinal de controle do sentido de rotação do motor (polaridade negativa).

Gnd Sinal terra (Somente em modo diferencial de alta velocidade).

Os 4 sinais para cada um dos 6 eixos se estão no conector CN1 da controladora.

3.2.1 Conexão Driver modo diferencial

A maioria dos servos contam com entradas de baixa e de alta velocidades para os sinais de passo e direção. As entradas de alta velocidade são tipo diferencias e oferecem melhor proteção contra ruídos. A NX-MAX6 também utiliza saídas diferenciais para os sinais de passo e direção, o que permite uma conexão mais robusta com os seus drivers. Se desejar utilizar conexões diferenciais deve conectar os drivers a controladora como mostrado no diagrama abaixo:

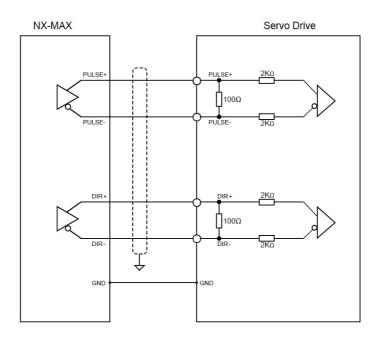


Figura 3 Configuração diferencial tipo Line Driver

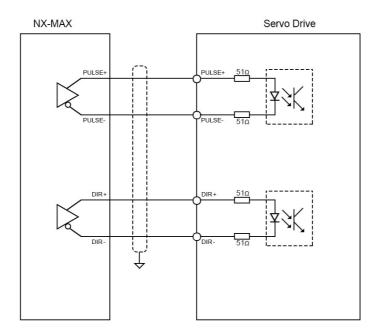


Figura 4 Configuração diferencial tipo Optoacoplador

3.2.2 Conexão Driver em modo PNP

No caso de Drivers para motores de passos você pode optar por uma conexão tipo PNP ou NPN. A vantagem da conexão PNP e que não requer de uma fonte de 5Volts externa para alimentar os optoacopladores dos drivers.

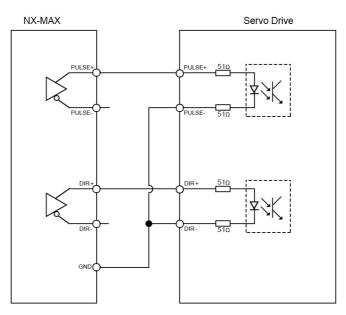


Figura 5 Configuração PNP

3.2.3 Conexão Driver em modo NPN

No caso de conexão NPN é necessária uma fonte externa de 5Volts para alimentar os optoacopladores do driver de motor de passo ou servo. Utilize o esquema abaixo para conectar a NX-MAX6 a seu driver.

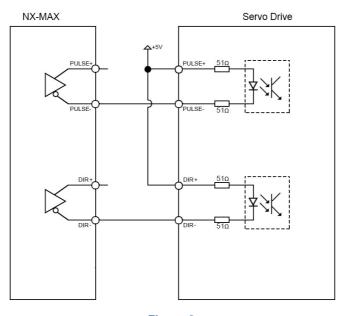


Figura 6 Configuração NPN

IMPORTANTE: Os sinais de Passo/Direção são digitais, e sua voltagem nunca deve superar os +5v ou ser menor de 0v. Voltagens fora destas especificações causarão danos permanentes a estas entradas. Também se deve ter cuidado de não curto circuitar os sinais de mais e menos, já que danificarão a controladora.

É IMPRESCINDÍVEL VERIFICAR A VOLTAGEM USADA ANTES DE CONECTAR A PLACA!

3.2.4 Entradas de 24volts

A NX-MAX6 conta 16 entradas de 24 volts que podem ser utilizadas para conectar sensores de fim de curso ou de referência.

IMPORTANTE: A voltagem de entrada nunca deve superar os +24v ou ser menor de 0v. Voltagens fora destas especificações causarão danos permanentes a estas entradas.

É IMPRESCINDÍVEL VERIFICAR A VOLTAGEM USADA ANTES DE CONECTAR A PLACA!

3.2.5 Saídas de 24volts

A NX-MAX6 oferece oito saídas/entradas. Estas saídas/entradas se não configuradas como saídas poderão ser utilizadas como umas entradas de 24 volts.

As saídas são utilizadas para acionar relés com bobinas de 24volts, e permitem uma corrente máxima de 50 ma. Verificar que os relés utilizados satisfazem este requerimento.

IMPORTANTE: Tomar precaução em não provocar um curto circuito nas saídas, pois isto poderadanificaria.

3.2.6 Como conectar um Relé

Para o caso de conexão de relé, por ser uma carga indutiva, deve contar com um diodo de proteção em paralelo com as suas bobinas.

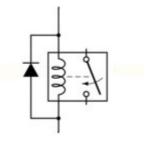


Figura 7 Diodo de Proteção

3.2.7 VOUT - Saída de 0...10volts

A NX-MAX6 conta com uma saída analógica de 0..10 Volts para controlar um inversor de frequência ou outro dispositivo que utilize 0..10V.

Para mais informações de como conectar o sinal 0 a 10volts, consulte o manual do seu variador de frequência (inversor).

Uma vez conectada a saída, você poderá mudar a velocidade do *spindle* no Mach3 e a voltagem de saída de este sinal mudará de acordo. A relação da voltagem de saída é calculada de acordo com a velocidade máxima configurada, e a velocidade de comando do *spindle*.

A velocidade máxima é configurada no Mach3 no menu de "Pulleys", onde a polia atual é designada com uma velocidade máxima.

A voltagem de saída é calculada de acordo com a fórmula:

Voltagem de saída (volts) = (Velocidade do spindle / Velocidade Máxima) * 10

Por exemplo: Se a polia atual tem uma velocidade máxima de 10.000 RPM designada a ela, e a velocidade atual do *spindle* e de 5.000 RPM, então a voltagem de saída será de 5 volts.

3.3 CN2 - Conector Ethernet

O conector Ethernet é utilizado para conectar a placa ao seu computador via cabo de rede ethernet, padrão RJ-45.

3.4 CN3 - Conector USB

O conector USB (ver em Figura 2) é utilizado para conectar a placa ao seu computador.

IMPORTANTE: Utilizar um cabo USB com blindagem. Não todos os cabos tem blindagem, o que poderia ocasionar uma série de problemas. Os cabos que incluem blindagem normalmente são de plástico transparente para se ver a blindagem.

3.5 CN4 - Conector Alimentação 24 Volts

A NX-MAX6requer de uma fonte de alimentação de 24 volts regulada para seu funcionamento. Esta fonte é utilizada para alimentar os circuitos da placa.

Entrada para alimentação de 24 volts corrente máxima é de 100ma.

Você deve conectar a fonte de 24 volts (estabilizada) ao conector Power (Figura 2). É preciso observar com atenção a polaridade dos fios de 24v e 0v (ver Figura 8) para evitar danificar a controladora.

IMPORTANTE:Inverter esta polaridade ocasionará danos permanente a placa, que não será coberto pela garantia.

Figura 8
Esquema Conector Power

O conector do centro é positivo, e deve ser conectado a 24Volts.

3.6 CN5 - Rede CAN

O conector CN5 (DB9) é utilizado para conectar dispositivos adicionais, tais como o controle de tocha nos sistemas de corte plasma. Normalmente não é utilizado a não ser que você adquira itens opcionais compatíveis com a controladora.

4 Instalação do Software

Para utilizar a NX é necessário instalar o *plugin* para o Mach3 e o driver USB. O *plugin* permite que o Mach3 se comunique e controle a NX-MAX6. Por ser um dispositivo USB ou rede Ethernet, o Windows requer de um *driver* para o correto funcionamento da interface USB.

IMPORTANTE: Assume-se que o usuário já tem o Mach3 instalado, e que todos os requisitos para sua operação foram preenchidos.

4.1 Instalação do *Plugin* para Mach3

Para que o Mach3 funcione com a NX-MAX6 é preciso instalar o *plugin*, conforme passo a passo a seguir.

- Coloque o disco de instalação no computador e clique no programa NxPlugin.msi. Aparecerá a tela inicial (Figura 9).
- Clique sobre o botão avançar.

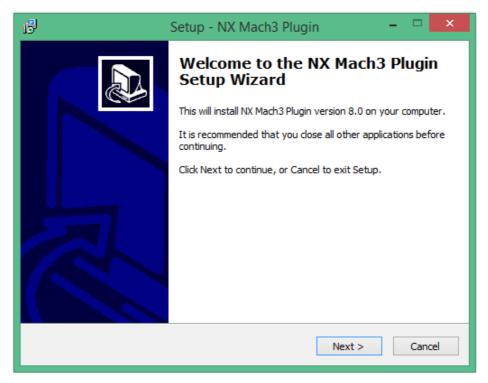


Figura 9

Pressione botão de avançar para continuar com a instalação.

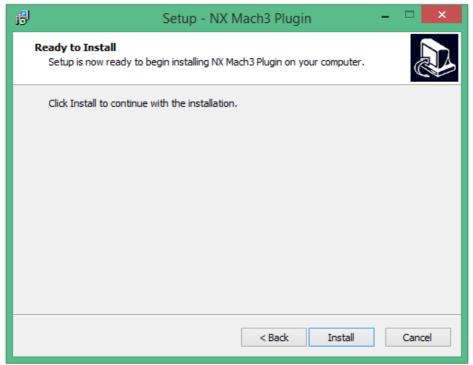


Figura 10

• A seguir pressione novamente o botão de avançar para iniciar a instalação (Figura 11). O instalador instalará os plug-ins na pasta "C:\Mach3\Plugins."

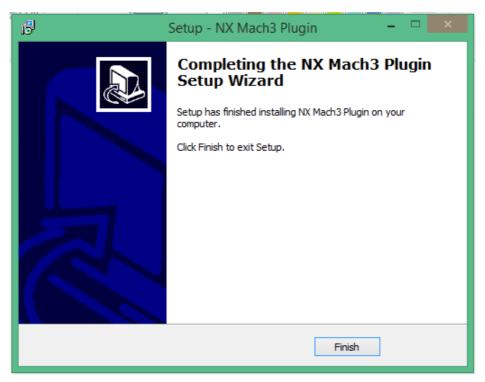


Figura 11

• Uma vez finalizada a instalação será mostrada a tela de "Instalação Concluída" (Figura 10).

O próximo passo será a instalação do driver USB para o Windows, ver seção
 4.2 deste documento.

4.2 Instalação dos Drivers USB

Uma vez finalizada a instalação do *plugin* para o Mach3, você deve instalar o *driver* USB da placa NX-MAX6.

Para isso, coloque o DVD que acompanha o produto na unidade DVD-ROM do seu computador, e conecte a placa por meio do cabo USB a uma porta USB do seu computador.

É recomendado que não se instale na porta de um HUB USB. A instalação da placa por meio de um HUB limita a velocidade de transferência de dados entre o computador e a placa, já que o cabo está sendo compartilhado com todos os outros periféricos conectados ao HUB.

- Após a conexão do cabo USB o Windows tentará instalar o driver.
- Selecione a opção de não se conectar à internet para buscar o driver.
- A seguir pressione novamente o botão de avançar para continuar com a instalação.

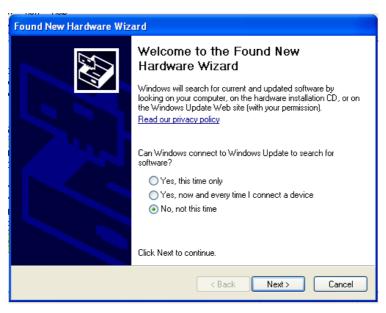


Figura 12

 A seguir selecione a opção de especificar a localização dos drivers e selecione a botão "avançar".

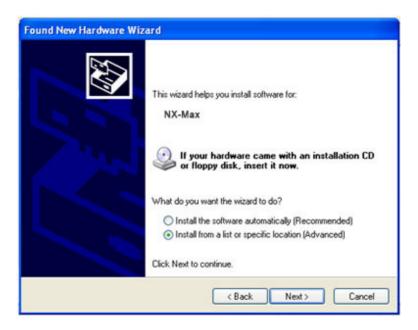


Figura 13

 Selecione a primeira opção para especificar que Windows busque o driver no DVD-ROM, caso o computador não tiver DVD-ROM, copie os drivers para um pendrive e ingresse a rota do arquivo "NxUsbDriver" do pendrive.

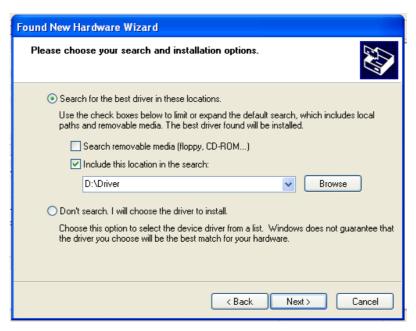


Figura 14

 Espere enquanto o Windows instala os drivers. Após finalizada a instalação, o Windows informará da correta instalação do driver. Pressione o botão "Terminar" para concluir a instalação.

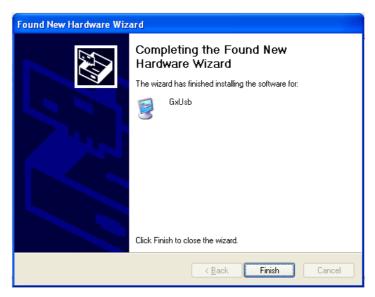


Figura 15

4.3 Verificação do funcionamento da NX-MAX6

Após a instalação do *plugin* e *driver* da placa, é necessário revisar seu correto funcionamento. Para isto não é necessário conectar nenhuma placa driver ou outro dispositivo a placa, basta conectá-la ao computador por meio do cabo USB.

Para verificar que a placa está corretamente instalada siga os seguintes passos:

- Sem que o Mach3 esteja sendo executado, conecte a placa ao computador com o cabo USB e verifique se o LED amarelo ao lado do conector USB está ligado.
- Inicie o MACH3, deverá aparecer a caixa diálogo para a seleção do *plugin* (Figura 16):

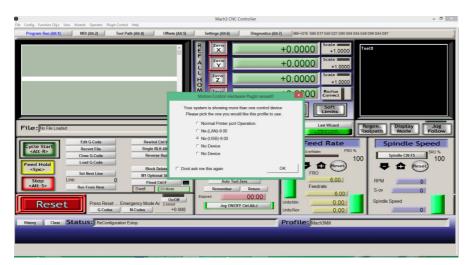


Figura 16

- Selecione o plugin NX-(USB)-9.00, e pressione OK. O LED azul de conexão com o Mach3 deverá acender.
- Utilize as teclas de Jogging e verifique se os DRO (indicadores de posição) mostram o respectivo movimento dos eixos.
- Sua NX-MAX6 está funcionado perfeitamente, agora é só conectar os *drivers* a placa, e configurar o Mach3 como descrito em "Configuração do Mach3 para uso da ", na página nº 22 desse manual.

5 Configuração do Mach3 para uso da NX-MAX6

5.1 Versão do seu Mach3

A NX-MAX6 foi desenhada para utilizar a versão "R3.043", ou versão mais recente do Mach3. Por favor, verificar a versão atual do Mach3 que você este usando, e se não for mais nova do que a versão acima mencionada, será necessário baixar a última versão no site do Mach3, ou pedir ao seu provedor uma versão mais nova.

Você pode atualizar seu Mach baixando a mais nova versão do site: http://machsupport.com/downloads.php

Obs.: Destacamos que isto não trará custos adicionais para você, já que todo usuário de Mach3 tem direito de atualizações gratuitas.

5.2 Configuração do Mach3

Não é intenção deste manual ensinar como configurar o Mach3, o Mach3 possui sua própria documentação que ensina o usuário todos os aspectos de sua configuração. No caso de utilizar a NX-MAX6 em vez de uma porta paralela, somente muda o modo de especificar os sinais dos motores, entradas e saídas como descritos mais adiante nesta seção.

Quando o usuário muda qualquer parâmetro relacionado à configuração do Mach3 é necessário pressionar o botão de "RESET" na tela do Mach3. Isto fará que o Mach3 envie a nova configuração ao *plugin* da NX-MAX6 informando ao dispositivo os novos parâmetros a serem usados. Isto também ocorre automaticamente cada vez que o Mach3 é reiniciado.

5.3 Configuração da Porta e Pinos para os Motores

Por utilizar a interface USB a configuração da porta e pinos para os motores é muito mais simples do que no caso de se utilizar a porta paralela. Não é necessário estabelecer a porta ou os pinos para os drivers de X, Y, Z e A.

Se você utilizou a conexão NPN para os drivers, você deverá selecionar o nível do sinal "Passo" como "ativo baixo", se não, este deve ser "ativo alto".

Os níveis dos sinais **Passo** e **Direção** são selecionados utilizando as colunas "**Dir Low Active**" e "**Step Low Active**" (como mostra a Figura 17). Se estes valores estiverem errados os eixos poderão andar ao reverso, ou não funcionar bem.

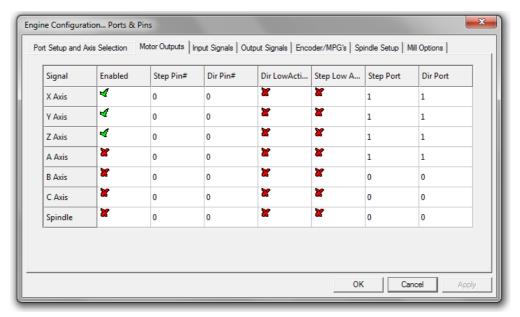


Figura 17

5.4 Configuração dos Sinais de Entrada

A NX-MAX6 conta com 16-24 sinais de entrada que podem ser configurados como desejar. Esta configuração é mais parecida à configuração da porta paralela. Por exemplo: para configurar a entrada digital número 1 como o interruptor de limite para o eixo X, é necessário habilitar o sinal na coluna "Enable" especificar a porta 1 e pino 1 (Ver Figura 18). Se desejar utilizar a entrada digital número 12 e só especificar 12 como o número do pino.

IMPORTANTE: Será sempre necessário estabelecer o valor da porta como 1 ou a entrada será ignorada pela NX-MAX6.

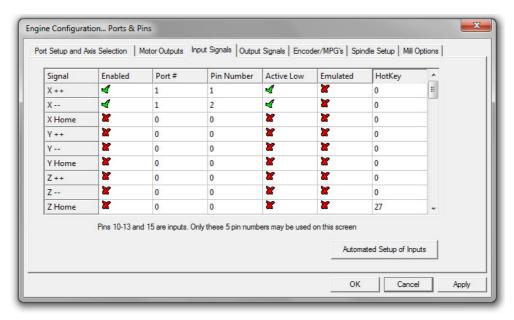


Figura 18

5.5 Configuração dos Sinais de Saída

A NX-MAX6 conta com 8 sinais de saídas para conectar relés ou outros dispositivos. Estas saídas fornecem 24 volts quando ativadas e 0 volts quando desativadas. A corrente máxima de uma saída deve ser limitada a 50 mili-amperes.

Para configurar as saídas é necessário habilitar o sinal na coluna "Enable", e especificar a porta 1 e o número da saída (1-4).

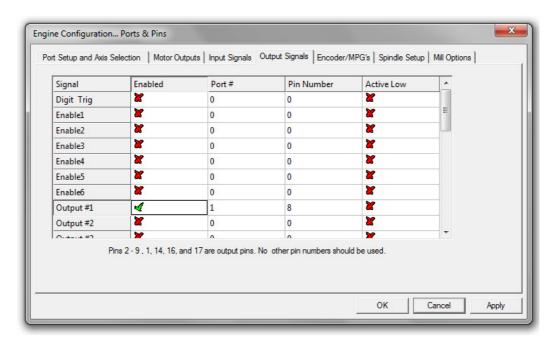


Figura 19

Se uma saída não for utilizada, a mesma poderá ser utilizada como entrada (entradas 17-24).

IMPORTANTE: Cada vez que se modifica algum parâmetro de configuração no Mach3, é necessário clicar no botão de **RESET** do Mach3 para que a interface NX-MAX6 seja "reconfigurada".

5.6 Configuração do parâmetro LookAhead

Para que a comunicação entre o Mach3 e a placa NX-MAX6 seja mais fluente, recomendamos que o parâmetro de *LookupAhead* do Mach3, este em um valor acima de 100. Isto significa que o Mach3 enviará blocos de 100 linhas de G-Code a placa NX-MAX6. O valor padrão quando o Mach3 é instalado é de 20, o que pode ocasionar umas paradas de 1 segundo de vez em quando durante a execução de uma sequência de código G.

Este parâmetro se encontra no menu de configuração general do Mach3 (config/General Config).

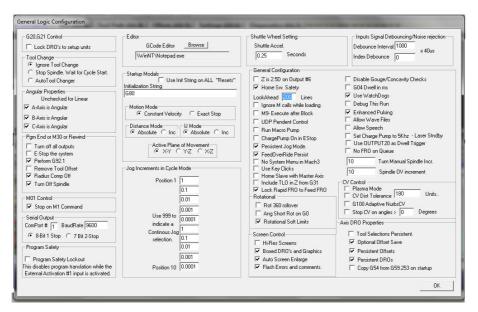


Figura 20

5.7 Resolução de Problemas

5.7.1 Erro de instalação no Windows XP

Muitas vezes o Windows XP não permite a instalação do driver de software, porque a pasta "c:\Windows\Inf" está com muitos arquivos "OEM*.INF" com tamanho zero. Para resolver este problema, apague todos os arquivos que comecem com "OEM" e tem a extensão de ".INF" na pasta "C:\Windows\Inf". Tome o cuidado de só apagar estes arquivos que são resíduo de outras instalações de drivers de software.

5.7.2 Os motores só giram para um lado

Alguns drivers requerem de +5V não entrada "OPTO" e quando esta voltagem não é fornecida os motores só giram em um sentido. Para resolver isto, conecte a saída de +5V a entrada "OPTO" do *driver*. Verifique tudo muito bem antes de ligar o sistema de novo. Em caso de não ter experiência em eletrônica consulte um técnico.

5.7.3 Os motores não giram

É importante configurar corretamente a largura dos pulsos de PASSO enviados aos *drivers*, alguns drivers ignoram pulsos abaixo de uma certa duração, fazendo que os motores não girem. Também é importante ver se a polaridade do pulso PASSO está correta, e se não, mudá-la na configuração do Mach3. Esta informação está na seção de configuração do Mach3 chamada "Motor Tunning".

5.7.4 Se observam paradas entre na trajetória de corte.

Se durante um corte se executam muitas paradas, será necessário aumentar o valor do parâmetro Lookahead como explicado acima.

6 Assistência Técnica

Se você tiver problemas ou qualquer dúvida na instalação deste produto, por favor entre em contato com o departamento de assistência técnica da **Nevex** pelo email:

info@nevex.com.br